Targeting Protein Synthesis and Degradation in Multiple Myeloma: A Look at What’s on the Horizon

Matthew Ho Zhi Guang, MD, and Giada Bianchi, MD

Abstract

The natural history of multiple myeloma (MM) has profoundly changed over the last 20 years, largely due to the introduction of novel agents targeting MM in the context of the bone marrow microenvironment. Once a rapidly fatal cancer, MM can now be effectively treated in most patients, with median overall survival approaching 10 years. The landscape of MM therapy is rapidly changing, with 9 drugs approved by the Food and Drug Administration (FDA) for MM in the past 14 years, including 4 in 2015. In this on-the-horizon review, we will discuss the molecular mechanisms and scientific rationale of FDA-approved and investigational agents targeting protein synthesis, folding, and degradation in MM. In fact, a pathognomonic feature of MM is the abundant synthesis and secretion of a monoclonal immunoglobulin, or free light chain, underscoring the importance of an intact protein synthesis-folding-degradation axis in this cancer. Clinical use of proteasome inhibitors has proved successful in MM, but acquired resistance remains a major concern, prompting further research into targeting alternative proteolytic pathways for synergistic MM killing with the goal of improving outcome in patients with multiple myeloma.

AJHO. 2017;13(3):4-14

Introduction

Multiple myeloma (MM) is a cancer of plasma cells characterized by increased survival and proliferation of terminally differentiated plasma cells in the bone marrow.1 Clinically, MM diagnosis is prompted by the detection of monoclonal intact immunoglobulin (M spike), also known as free light chains (not in association with heavy chains), in the serum and urine of patients presenting with 1 or more of hypercalcemia, renal failure, anemia, and bone disease (the CRAB criteria). Major progress in our understanding of MM biology over the past 4 decades has led to significant improvements in how we treat MM, reflected by a 3- to 4-fold increase in patient median survival. Although MM is now better controlled over longer periods for many patients, it remains incurable and resistance to novel agents represents a major clinical problem. This review will focus on the molecular mechanisms underlying protein handling in MM and on bench-to-bedside translation of therapies targeting protein synthesis, folding, and degradation in MM. Rational combination of these agents holds promise to help overcome proteasome inhibitor (PI) resistance in MM, with the goal of achieving prolonged remission, if not cure, for most patients with multiple myeloma.

Scientific Rationale for Targeting Protein-Handling Pathways in Multiple Myeloma

The process of protein synthesis and folding is intrinsically prone to errors, and eukaryotic cells are equipped with quality control mechanisms to ensure that native proteins adopt proper tertiary and quaternary conformations. The cytotoxic accumulation of misfolded proteins causes endoplasmic reticulum (ER) stress and activates the unfolded protein response (UPR), which, together with autophagy, aggresome, and the ubiquitin-proteasome system (UPS), has the goal of maintaining protein homeostasis.2,3 It is estimated that one-third of newly synthesized proteins are degraded via the proteasome within minutes of their synthesis due to an intrinsic inability to achieve stably folded conformations.4 These rapidly degraded proteins are termed “defective ribosomal products” (DRiPs). Due to high protein turnover, cancer cells typically produce an even higher percentage of DRiPs, making them reliant on an intact UPS for survival.5-8 This is especially true for MM, a cancer characterized by a high synthesis rate of immunoglobulins. In fact, MM cells exhibit stigmata of ongoing proteotoxic stress with baseline induction of UPR and accumulation of polyubiquitinated proteins, providing a substrate for proteasome-mediated degradation.9,11 Studies have shown that an imbalance between the cargo for proteasomal degradation (polyubiquitinated proteins) and the activity of the proteasome is a key determinant of PI sensitivity in MM.12 Drugs that increase proteasome workload (eg, heat shock protein [HSP] inhibitors, ER stressors) synergize with drugs that decrease proteasome activity (eg, PIs) in MM. The results of in vitro studies have shown that proteasome inhibition, perhaps even UPR induction, results in the compensatory activation of aggresome, autophagy, and heat shock response pathways in an
effort to protect MM cells from proteotoxicity (Figure 1).2,13-15

Further work assessing the combinatorial effects of blocking 2 or more of these pathways in MM are currently ongoing, some of which are highlighted below.

Ubiquitin-Proteasome System

At the core of protein homeostasis in eukaryotes is the UPS (Figure 1A). Proteins targeted for proteasome degradation are polyubiquitinated via a 3-enzyme cascade involving E1 (activating), E2 (conjugating), and E3 (ligase) enzymes, while deubiquitinating enzymes (DUBs) act in opposition to E3 ligases to remove ubiquitin.16-19 The 26S proteasome is an ATP-dependent, multicatalytic complex comprising a 20S catalytic core flanked on either side by 19S regulatory caps.20 Polyubiquitinated substrates are recognized by the 19S regulatory subunit that, in concert with DUBs, remove ubiquitin and facilitate engagement with the 20S core that contains the catalytically active β1 (caspase-like activity), β2 (trypsin-like activity), and β5 (chymotrypsin-like activity) subunits.21,22 The PIs bortezomib, carfilzomib, ixazomib, and oprozomib primarily target the β5 subunit, while marizomib appears to have activity against all 3 β-subunits.23-26

Prior to degradation, proteasome-associated DUBs (eg, RPH11, UCH37, and USP14) remove ubiquitin chains, which would otherwise sterically hinder the translocation of target proteins to the 20S core.27 Similar to PIs, DUB inhibitors trigger polyubiquitinated protein accumulation and apoptosis in MM, but without inhibiting the catalytic subunits of the proteasome.28-30 Thus, DUB inhibitors could theoretically overcome resistance to proteasome inhibition when this is mediated by mutations in the catalytic subunits of the proteasome. Furthermore, DUB inhibition offers the opportunity to promote the degradation of proteins that are preferential clients of specific DUBs.

Autophagy

Autophagy, a conserved process of autophagolysis that plays a key role in maintaining protein homeostasis (Figure 1B), participates in the quality control of protein synthesis/degradation by sequestering misfolded/aggregated proteins in autophagosomal vesicles for subsequent lysosome degradation.31 Studies have shown that crosstalk exists between UPS, ER stress, and autophagy.32-34 Although elevated basal autophagic activity in primary MM cells is associated with shorter overall survival (OS) and progression-free
survival (PFS), autophagy’s role in MM is controversial given that it can be pro-survival and pro-apoptotic depending on factors we have yet to fully understand. The current consensus is that a basal level of autophagy is essential for MM survival as an alternative proteolytic pathway in the face of decreased proteasome activity/increased proteotoxic stress, thus providing a rationale for the combination of autophagy inhibitors with PI in MM. However, persistent, sustained, and uncontrolled autophagy is likely to result in cell death, outlining the difficulties in therapeutically targeting autophagy. Aggresome Pathway

In vitro, the aggresome pathway is activated when proteasomes are blocked. Polyubiquitinated protein aggregates are transported along the microtubule to the microtubule-organizing center in a histone deacetylase 6 (HDAC6)-dependent manner to form aggresomes that target proteins for refolding or degradation by autophagy (Figure 1C). The results of in vitro studies show that combined inhibition of the proteasome and aggresome leads to synergistic cell death in MM, providing strong rationale for combining PI with HDAC6 selective inhibitors.

Heat Shock Chaperone Proteins

Heat shock chaperone proteins (HSPs) are a class of enzymes that chaperone the proper folding and function of proteins, and that direct misfolded proteins to degradation; therefore, they participate in protein quality control (Figure 1D). In MM, HSPs support proliferation and survival by 1) facilitating proper folding of newly synthesized proteins to prevent proteotoxic stress and 2) preferentially supporting the folding and expression of several oncogenes. Two main families of HSPs are being targeted therapeutically in MM: HSP90 and HSP70. Interestingly, HSP70 overexpression in neurons results in inhibition of caspase-dependent and -independent apoptosis, suggesting a third pro-survival function. Inhibition of HSP90 or the proteasome results in compensatory upregulation of HSP70, thereby making the latter an attractive target in combinatorial anti-MM therapy. Recently, there has been growing interest in developing inhibitors against heat shock factor 1 (HSF1), the “master regulator” of heat shock response, in an attempt to avoid compensatory upregulation of individual chaperones.

Endoplasmic Reticulum Stress and Unfolded Protein Response

The UPR is a tripartite response triggered by the accumulation of unfolded/misfolded proteins in the ER (Figure 1E). The UPR functions to restore equilibrium in the ER; however, prolonged/persistent activation of UPR results in apoptosis. The 3 distinct UPR branches are regulated by 3 kinases: IRE1, PERK, and ATF6. Activation of IRE1 results in the splicing of XBP1 mRNA which, together with activated ATF6, regulates ER expansion, increases expression of chaperone proteins, and initiates ER-associated degradation to reduce ER stress. Depending on the magnitude and duration of stress, IRE1 can either activate anti-apoptotic signaling through protein kinase B or trigger apoptosis through c-Jun N-terminal kinases (JNK) activation. Furthermore, JNK activation can initiate autophagy, thereby serving as a link between ER stress and autophagy. Finally, protein kinase R-like ER kinase (PERK) activation inhibits eIF2α, leading to a repression of global protein synthesis while selectively inducing the translation of ATF4. ATF4 activates cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP), and together they upregulate protective autophagy in the face of transient proteotoxic stress. However, if the stress is prolonged, CHOP can trigger apoptosis, outlining the double-edged nature of this stress response pathway.

Forced expression of spliced X-box binding protein 1 (XBP1) in B cells induces an MM-like phenotype in mice, and high XBP1 expression in primary MM cells correlates with poor OS, suggesting that chronic IRE1-XBP1 activation may be important for MM survival. However, it was recently demonstrated that decreased XBP1 splicing confers bortezomib resistance in MM. By suppressing XBP1s, MM cells commit to plasma cell maturation and decrease immunoglobulin production, proteasome load, and ER stress, resulting in acquired resistance to PI.

Clinical Translation of Therapies Targeting Protein-Handling Pathways in Multiple Myeloma

Drugs Targeting the Ubiquitin-Proteasome Pathway

Apart from FDA-approved bortezomib, carfilzomib, and ixazomib, there are 2 novel PIIs in advanced clinical development, oprozomib and marizomib. Oprozomib (ONX 0912), an oral analogue of carfilzomib, is an irreversible epoxyketone PI. In preclinical studies, oprozomib demonstrated cytotoxicity in MM in combination with lenalidomide and/or HDAC inhibitor molecules, as well as bone anabolic effects. A phase Ib/II trial of single-agent oprozomib showed an overall response rate (ORR) of 22% to 34% in relapsed/refractory MM (R/R MM), including bortezomib- and carfilzomib-refractory MM. Oprozomib (NCT02103335) reported an ORR of 7.4% in bortezomib-, lenalidomide-, and/or thalidomide-refractory patients.

Clinical trials evaluating the combination of marizomib and pomalidomide/dexamethasone, clinical trials evaluating this combination are now underway (NCT02103335).
TABLE. Investigational Drugs Targeting Protein Synthesis/Degradation Pathways in Multiple Myeloma

<table>
<thead>
<tr>
<th>Drug Name/Sponsor</th>
<th>Mechanism of Action</th>
<th>Study Design</th>
<th>Status/Clinical Trials ID/PMID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteasome inhibitors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marizomib (NPI-0052) Triphase Research and Development I Corporation (USA)</td>
<td>Proteasome inhibition; caspase 8- and 9-mediated apoptosis</td>
<td>Marizomib alone, Marizomib + POM + low-dose dexamethasone in R/R MM</td>
<td>Phase I/II NCT00461045, Phase I NCT02103335</td>
</tr>
<tr>
<td>Oprozomib (ONX 0912, PR-047) Onyx Therapeutics (USA)</td>
<td>Proteasome inhibition; caspase 8- and 9-mediated apoptosis; p53 and p21 upregulation terminal UPR induction; miR33b upregulation, PIM1 downregulation</td>
<td>Oprozomib alone, Oprozomib + DEX, Oprozomib + DEX in R/R MM, Oprozomib + POM + DEX in R/R MM, Oprozomib + melphalan + prednisone in ND MM (transplant-ineligible)</td>
<td>Phase I/II NCT01416428, Phase I/II NCT01881789, Phase IB/II NCT01832727, Phase I/II NCT01999335, Phase I/II NCT02072863</td>
</tr>
<tr>
<td>Inhibitors of deubiquitinating enzymes (DUBs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLX1570 Vivolux AB (Sweden)</td>
<td>Inhibits proteasome DUB (USP14) activity</td>
<td>VLX1570 + DEX in R/R MM</td>
<td>Phase I/II NCT02372240</td>
</tr>
<tr>
<td>P5091 NA</td>
<td>Inhibits DUB USP7 to induce apoptosis in MM cells</td>
<td>N/A</td>
<td>Preclinical PMID: 22975377</td>
</tr>
<tr>
<td>B-AP15 NA</td>
<td>Blocks USP14 and UCHL5; growth arrest via downregulation of CDC25C, CDC2, and cyclin B1; induction of caspase-dependent apoptosis; activation of UPR</td>
<td>N/A</td>
<td>Preclinical PMID: 24319254</td>
</tr>
<tr>
<td>RA190 NA</td>
<td>Inhibits 19S proteasome-associated ubiquitin receptor Rpn13 to inhibit proteasome function without blocking proteasome activity or the 19S deubiquitylating activity</td>
<td>N/A</td>
<td>Preclinical PMID: 27118409</td>
</tr>
<tr>
<td>Histone deacetylase inhibitors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorinostat Acetylon (USA)</td>
<td>Caspase 8/9-mediated apoptosis; terminal UPR induction; polyubiquitinated protein accumulation; aggresome disruption</td>
<td>Ricolinostat + LEN + DEX in R/R MM</td>
<td>Phase I/II NCT00773747</td>
</tr>
<tr>
<td>Ricolinostat Acetylon (USA)</td>
<td>Caspase 8/9-mediated apoptosis; terminal UPR induction; polyubiquitinated protein accumulation; aggresome disruption</td>
<td>Ricolinostat + LEN + DEX in R/R MM</td>
<td>Phase I/II NCT01583283</td>
</tr>
<tr>
<td>ACY-241 Acetylon (USA)</td>
<td>Downregulation of MYC and IRF4 proteins; inhibits aggresome formation</td>
<td>ACY-241 + POM + DEX vs ACY-241 alone in R/R MM</td>
<td>Phase Ia/Ib NCT02400242</td>
</tr>
<tr>
<td>Autophagy inhibitors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroquine New York University School of Medicine (USA)</td>
<td>Inhibits autophagy by inhibiting autophagosome and lysosome fusion</td>
<td>Chloroquine in combination with BTZ and cyclophosphamide in R/R MM</td>
<td>Phase I/II NCT01438177</td>
</tr>
<tr>
<td>3-MA NA</td>
<td>Inhibits autophagy at the level of PI3K class III</td>
<td>N/A</td>
<td>Preclinical PMID: 194648108</td>
</tr>
<tr>
<td>Bafilomycin A1 NA</td>
<td>Inhibits autophagy by inhibiting autophagosome and lysosome fusion</td>
<td>N/A</td>
<td>Preclinical PMID: 21174067</td>
</tr>
</tbody>
</table>

CDC25C indicates cell division cycle 25 homolog; DEX, dexamethasone; DUB, deubiquitinating enzyme, LEN, lenalidomide; MM, multiple myeloma; ND, newly diagnosed; PMID, PubMed; POM, pomalidomide; R/R, relapsed/refractory; UCHL5, ubiquitin C-terminal hydrolase L5; UPR, unfolded protein response; USP14, ubiquitin specific peptidase 14; CDC 25C, cell division cycle 25 homolog. *Table adapted from Bianchi et al (2015).*
TABLE. Investigational Drugs Targeting Protein Synthesis/Degradation Pathways in Multiple Myeloma† (continued)

<table>
<thead>
<tr>
<th>Drug Name/Sponsor</th>
<th>Mechanism of Action</th>
<th>Study Design</th>
<th>Status Clinical Trials ID/PMID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfolded protein response</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunitinib (SU11248) National Cancer Institute (USA)</td>
<td>Inhibition of IRE1 kinase activity</td>
<td>Sunitinib in R/R MM</td>
<td>Phase II NCT00514137</td>
</tr>
<tr>
<td>Nelfinavir Swiss Group for Clinical Cancer Research (CHE)</td>
<td>Triggers UPR, inhibition of proteasome activity and p-AKT, synergizes with PI in both PI-sensitive and -resistant MM</td>
<td>Nelfinavir + LEN/DEX in progressive MM</td>
<td>Phase I/II NCT01555281</td>
</tr>
<tr>
<td>Lovastatin, zoledronic acid, digeranyl bisphosphonate NA</td>
<td>Inhibition of the isoprenoid biosynthetic pathway and Rab geranylgeranylation disrupts light chain trafficking, resulting in accumulations of light chain in the endoplasmic reticulum and activation of UPR</td>
<td>Nelfinavir + BTZ/DEX in resistant MM</td>
<td>Phase II NCT02188537</td>
</tr>
<tr>
<td>4μ8C NA</td>
<td>Inhibition of XBP1 mRNA splicing</td>
<td>N/A</td>
<td>Preclinical PMID: 22315414⁴⁹</td>
</tr>
<tr>
<td>MAL3-101 NA</td>
<td>Induction of XBP1 mRNA splicing</td>
<td>N/A</td>
<td>Preclinical PMID: 22750096⁵⁰</td>
</tr>
<tr>
<td>MKC-3946 NA</td>
<td>Inhibition of XBP1 mRNA splicing</td>
<td>N/A</td>
<td>Preclinical PMID: 14559994⁵¹</td>
</tr>
<tr>
<td>STF-083010 NA</td>
<td>Inhibition of XBP1 mRNA splicing</td>
<td>N/A</td>
<td>Preclinical PMID: 21081713⁵²</td>
</tr>
<tr>
<td>GSK2656157 NA</td>
<td>Inhibition of PERK and eIF2α phosphorylation, ATF4 translation and</td>
<td>N/A</td>
<td>Preclinical PMID: 23333938⁵³</td>
</tr>
<tr>
<td>Heat shock protein inhibitors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KW-2478 Kyowa Hakko Kirin Pharma (Japan)</td>
<td>HSP90 inhibitor; apoptosis</td>
<td>KW-2478 in combination with BTZ in R/R MM</td>
<td>Phase II NCT01063907</td>
</tr>
<tr>
<td>NVP-AUY922 Novartis (Switzerland)</td>
<td>HSP90 inhibitor; apoptosis; downregulation of survival pathways</td>
<td>AUY922 +/- BTZ +/- DEX in R/R MM</td>
<td>Phase I/II NCT00708292</td>
</tr>
<tr>
<td>IPI-504 Infinity Pharmaceuticals (USA)</td>
<td>HSP90 inhibitor; inhibition of UPR</td>
<td>IPI-504 in R/R MM</td>
<td>Phase I NCT00113204</td>
</tr>
<tr>
<td>Tanespimycin (17-AAG) Bristol-Myers Squibb (USA)</td>
<td>HSP90 inhibitor; inhibition of downstream signaling pathways; induces UPR</td>
<td>Tanespimycin + BTZ in relapsed MM</td>
<td>Phase I NCT00546780</td>
</tr>
<tr>
<td>SNX-5422 Esanex (USA)</td>
<td>HSP90 inhibitor; apoptosis</td>
<td>SNX-5422 in refractory MM</td>
<td>Phase I NCT00595686</td>
</tr>
<tr>
<td>NVP-HSP990 NA</td>
<td>HSP90 inhibitor; induces apoptosis and cell cycle arrest</td>
<td>N/A</td>
<td>Preclinical PMID: 22309072⁵²</td>
</tr>
<tr>
<td>NVP-BEP800 NA</td>
<td>HSP90 inhibitor; apoptosis; inhibition of STAT3, ERK, and AKT pathways</td>
<td>N/A</td>
<td>Preclinical PMID: 21174067⁵³</td>
</tr>
<tr>
<td>SNX-2112 NA</td>
<td>HSP90 inhibitor; cell cycle arrest and cytotoxicity in MM; downregulation of AKT and ERK; inhibits angiogenesis and osteoclastogenesis</td>
<td>N/A</td>
<td>Preclinical PMID: 18948577⁵⁴</td>
</tr>
<tr>
<td>MAL3-101 NA</td>
<td>HSP70 inhibitor; induces apoptosis and cell cycle arrest in MM</td>
<td>N/A</td>
<td>Preclinical PMID: 21977030⁵⁵</td>
</tr>
<tr>
<td>PLH71 NA</td>
<td>HSP90 inhibitor; induces cell cycle arrest, apoptosis, and UPR</td>
<td>N/A</td>
<td>Preclinical PMID: 20977755⁵⁶</td>
</tr>
</tbody>
</table>

BTZ indicates bortezomib; CHOP, cyclophosphamide, doxorubicin, vincristine, and prednisone; DEX, dexamethasone; HSP, heat shock protein; MM, multiple myeloma; PERK, protein kinase R-like ER kinase; R/R, relapsed/refractory; UPR, unfolded protein response; XBP1, X-box binding protein 1.
†Table adapted from Bianchi et al (2015).
Histone Deacetylase Inhibitors
Panobinostat, in combination with bortezomib and dexamethasone, was recently approved as a third-line therapy in patients with MM with prior bortezomib and immunomodulatory drug (IMiD) exposure. Vorinostat is a class I and II HDAC inhibitor currently undergoing clinical trials. The phase III Vantage 008 trial reported improvements in ORR (54% vs 41%; P < .0001) and PFS (7.6 vs 6.8 months; P = .10) when vorinostat was added to bortezomib. However, modest activity and/or significant toxicity hampered clinical development of next-generation HDAC9 inhibitors.

Deubiquitinating Enzyme Inhibitors
The small-molecule DUB inhibitors RA190, P5091, and B-AP15 target RPN13, USP7, and USP14/UCHL5, respectively. In vitro, they induce proteotoxicity and apoptosis in MM without direct inhibition of catalytic subunits of the proteasome. The USP14 inhibitor VLX1570 also demonstrated preclinical activity and is currently being evaluated in an early-phase clinical trial in MM.

Heat Shock Chaperone Protein Inhibitors
HSP90 is the most well-studied chaperone protein in MM. Several HSP90 inhibitors have completed phase I clinical studies (Table). Notably, among patients who were evaluable (n = 67), the combination of tanespimycin with bortezomib in R/R MM was associated with an ORR of 15%. However, modest activity and/or significant toxicity hampered clinical development of next-generation HSP90 inhibitors.

Histone Deacetylase Inhibitors
Panobinostat, in combination with bortezomib and dexamethasone, was recently approved as a third-line therapy in patients with MM with prior bortezomib and immunomodulatory drug (IMiD) exposure. Vorinostat is a class I and II HDAC inhibitor currently undergoing clinical trials. The phase III Vantage 008 trial reported improvements in ORR (54% vs 41%; P < .0001) and PFS (7.6 vs 6.8 months; P = .10) when vorinostat was added to bortezomib. However, modest activity and/or significant toxicity hampered clinical development of next-generation HDAC9 inhibitors.

Deubiquitinating Enzyme Inhibitors
The small-molecule DUB inhibitors RA190, P5091, and B-AP15 target RPN13, USP7, and USP14/UCHL5, respectively. In vitro, they induce proteotoxicity and apoptosis in MM without direct inhibition of catalytic subunits of the proteasome. The USP14 inhibitor VLX1570 also demonstrated preclinical activity and is currently being evaluated in an early-phase clinical trial in MM.

Heat Shock Chaperone Protein Inhibitors
HSP90 is the most well-studied chaperone protein in MM. Several HSP90 inhibitors have completed phase I clinical studies (Table). Notably, among patients who were evaluable (n = 67), the combination of tanespimycin with bortezomib in R/R MM was associated with an ORR of 15%. However, modest activity and/or significant toxicity hampered clinical development of next-generation HSP90 inhibitors.

Histone Deacetylase Inhibitors
Panobinostat, in combination with bortezomib and dexamethasone, was recently approved as a third-line therapy in patients with MM with prior bortezomib and immunomodulatory drug (IMiD) exposure. Vorinostat is a class I and II HDAC inhibitor currently undergoing clinical trials. The phase III Vantage 008 trial reported improvements in ORR (54% vs 41%; P < .0001) and PFS (7.6 vs 6.8 months; P = .10) when vorinostat was added to bortezomib. However, modest activity and/or significant toxicity hampered clinical development of next-generation HDAC9 inhibitors.

Deubiquitinating Enzyme Inhibitors
The small-molecule DUB inhibitors RA190, P5091, and B-AP15 target RPN13, USP7, and USP14/UCHL5, respectively. In vitro, they induce proteotoxicity and apoptosis in MM without direct inhibition of catalytic subunits of the proteasome. The USP14 inhibitor VLX1570 also demonstrated preclinical activity and is currently being evaluated in an early-phase clinical trial in MM.
compounds have long been obscure, and the anti-angiogenic effect was initially thought to be primarily responsible for their anti-MM activity. However, the degradation of the transcription factors Ikaros (IKZF1) and Aiolos (IKZF3) was recently shown to be the base of the anti-MM effect of lenalidomide. In an unexpected twist, lenalidomide was shown to bind to the E3 ubiquitin-ligase complex made up of the damage-specific DNA-binding protein 1 (DDB1) and cereblon, enhancing its activity and facilitating ubiquitination and proteasome-mediated degradation of IKZF1 and IKZF3. IMiD-mediated stimulation of thymus and natural killer (NK) immunity similarly depends on the degradation of IKZF1 and IKZF3, resulting in IL-2 production in T lymphocytes. Based on these findings, the clinical synergism between bortezomib, a PI, and lenalidomide, a facilitator of proteasome-mediated IKZF1 and IKZF3 degradation, appears paradoxical and remains to be clarified at the cellular and molecular levels.

Conclusions and Future Directions
Although disrupting proteostasis via a PI has been successful in MM, innate or acquired resistance remains a major clinical challenge. Combination treatments have only partially overcome these issues, and progressive acquisition of resistance to multiple agents with each disease relapse is a well-known phenomenon in MM. Recent research efforts have focused on modulating other facets of protein homeostasis pathways (ie, aggresome, autophagy, UPR, DUB, HSP), with the goal of exacerbating proteotoxicity and overcoming MM drug resistance (Figure 1).

Recent insight into the mechanism of IMiDs has led to a novel therapeutic strategy (degronomid) that exploits the ability of IMiDs to redirect the cereblon E3 ubiquitin ligase complex toward specific proteins, thus targeting them for degradation. As a proof-of-concept, the phthalimide conjugate d-bromodomain and extra-terminal 1 was able to selectively induce cereblon-dependent BET protein degradation both in vitro and in mice (Figure 1F). This ability to hijack the UPS to selectively degrade proteins that are otherwise considered undruggable (eg, MYC, β-catenin, and myeloid cell leukemia 1) could be a powerful tool in the treatment of MM and other malignancies.

In conclusion, the understanding of MM reliance on protein-handling pathways paved the way to therapeutically target this Achilles’ heel by exacerbating baseline proteotoxic stress. In combination with IMiDs and immunotherapies, drugs targeting the protein synthesis/degradation machinery hold the key to achieving sustained remission, if not cure, in most MM patients.

Acknowledgements: We would like to thank Steven C. Smith, MD, PhD, Department of Pathology, Virginia Commonwealth University Medical Center, Richmond, Virginia, for his assistance with this report.

Financial disclosures: The authors report no relationship or financial interest with any entity that would pose a conflict of interest with the subject matter of this article.

Author affiliations: Both Matthew Ho Zhi Guang and Giada Bianchi are with the department of Medical Oncology, Jerome Lipper Multiple Myeloma Center and LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts.

Address correspondence to: Giada Bianchi, MD, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215. E-mail: Giada_Bianchi@dfci.harvard.edu.

References

WWW.AJHO.COM
3049. doi: 10.1182/blood-2008-08-172734.
43. Majeski AE, Dice JF. Mechanisms of chaperone-mediated
63. Richardson PG, Bagros AZ, Jagannath S, et al. Tanespimycin

