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Introduction
Metastasis is responsible for more than 90% of cancer-related 
deaths. Prostate cancer is no exception, with approximately 26,120 
men expected to succumb to the disease due to complications of 
metastasis in 2016.1 Of these, it is expected that more than 90% 
will have evidence of skeletal lesions.2 The median survival time for 
patients with active metastatic castration-resistant prostate cancer 
(mCRPC) is approximately 3 years. Understanding how metastatic 
prostate cancer cells grow and interact with the surrounding tumor 
microenvironment can identify key circuits driving the progression 
of the disease.3 Research in this area has revealed targets for thera-
peutic intervention, the translation of which should enhance the 
overall survival (OS) of patients with mCRPC.

Androgen Deprivation Therapy (ADT) for Bone mCRPC
The National Comprehensive Cancer Network suggested guide-
lines4 for the treatment of men given a diagnosis with bone mCRPC 
are immunotherapy (sipuleucel-T) followed by androgen deprivation 
therapy (ADT; abiraterone acetate and enzalutamide), chemother-
apy (docetaxel with prednisone), radiopharmaceutical therapy (ra-
dium 223), suggestion of a clinical trial, or a potential secondary 

hormone therapy such as ketaconozole. 
The upregulation of pathways involved in androgen synthesis 

or mutations/amplification in the androgen receptor (AR) itself 
allows cancer cells to continue feeding on androgens despite the 
systemic depletion of the ligand. Further, androgen interaction 
with AR-expressing bone-building osteoblasts promotes differ-
entiation and bone formation.5,6 Given the reliance of mCRPC 
cells on androgen for growth in bone, inhibitors that block an-
drogen synthesis or the activity of mutant AR remain an in-
tense area of investigation and clinical trial activity. For example,  
CYP17A1 is an important enzyme used by CRPC cells for the de 
novo synthesis of androgens, and this discovery led to the genesis of 
abiraterone, a small molecule inhibitor of CYP17A1 activity.7 Abi-
raterone given in combination with prednisone, a corticosteroid, 
was first shown to increase the median OS by 4.6 months, compared 
with placebo plus prednisone, in mCRPC patients who had previ-
ously received docetaxel.8 Median OS was increased to three years in 
chemotherapy-naïve patients, compared with placebo.9 Additionally, 
abiraterone was shown to also significantly delay the time to first 
skeletal-related event (SRE).10,11 

Enzalutamide, an AR antagonist, was first shown to increase me-
dian OS by 4.8 months in mCRPC patients who had previously 
received docetaxel, compared with the placebo group.12 The time-to-
disease progression, measured by prostate-specific antigen (PSA) lev-
els, was increased by 5.3 months and radiographic progression-free 
survival (PFS) increased by 5.4 months, compared with placebo. In 
a phase III randomized trial, enzalutamide increased the time to the 
first occurrence of an SRE, suggesting an impact on disease progres-
sion in bone.13 Given the success of these ADTs as single agents, 
they are now being investigated for their efficacy together or when 
combined with other therapies (Table). 

Building on this approach, galeterone, a novel dual small mol-
ecule inhibitor of CYP17A1 and AR was compared with enzalut-
amide alone in clinical trials (ARMOR3-SV). The major endpoint 
for mCRPC patients was radiographic PFS but in July 2016, the trial 
was halted due to predicted failure to meet this goal.14 The drug, 
however, remains in phase II clinical trials examining safety and re-
sponse of the patients that have progressive CRPC but have failed 
oral therapy (ARMOR2; NCT01709734). Other AR and CYP17A1 
targeted inhibitors, such as apalutamide and seviteronel, remain the 
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Metastatic castration-resistant prostate cancer (mCRPC) 
is incurable and typically manifests in the skeleton. In the 
bone microenvironment, prostate cancer cells survive 
by promoting bone remodeling, resulting in the release 
of factors that drive CRPC growth. These lesions contain 
areas of extensive bone destruction and formation that 
can lead to pathological fracture, thereby greatly contrib-
uting to patient morbidity and mortality. Therapies that 
can treat the disease and extend overall survival are an 
urgent clinical need. To this end, recent advances in our 
understanding of how mCRPC survives and grows in 
bone have contributed to the development of promising 
therapeutics. Here, we briefly review current standard of 
care therapies, ongoing trials, and novel therapies for the 
treatment of mCRPC. 



TA
R

G
ET

IN
G

 B
O

N
E 

M
ET

A
S

TA
TI

C
 C

A
S

TR
AT

E 
R

ES
IS

TA
N

T 
PR

O
S

TA
TE

 C
A

N
C

ER

V
O

L.
 1

2,
 N

O
. 8

 
T

H
E

 A
M

E
R

IC
A

N
 JO

U
R

N
A

L 
O

F 
H

E
M

A
T

O
LO

G
Y

/O
N

C
O

LO
G

Y
® 

18

T
A

B
L

E
 1

. 
A

n 
O

ve
rv

ie
w

 o
f 

O
ng

oi
ng

 C
li

ni
ca

l T
ri

al
s 

fo
r 

B
on

e 
M

et
as

ta
ti

c 
C

R
P

C
 (

w
w

w
.c

li
ni

ca
lt

ri
al

s.
go

v)

A
R

-V
7,

 a
nd

ro
ge

n-
re

ce
pt

or
 s

pl
ic

e 
va

ri
an

t 7
; C

TL
A-

4,
 c

yt
ot

ox
ic

 T
-ly

m
ph

oc
yt

e-
as

so
ci

at
ed

 p
ro

te
in

 4
; F

G
FR

3,
 fi

br
ob

la
st

 g
ro

w
th

 fa
ct

or
 r

ec
ep

to
r 

3;
 G

M
-C

SF
, g

ra
nu

lo
cy

te
-m

ac
ro

ph
ag

e 
co

lo
ny

-s
tim

ul
at

in
g 

fa
ct

or
; I

G
F1

R
, i

ns
ul

in
-li

ke
 g

ro
w

th
 fa

ct
or

 1
 r

ec
ep

to
r;

 m
TO

R
, m

am
m

al
ia

n 
ta

rg
et

 o
f 

ra
pa

m
yc

in
; O

C
L,

 o
st

eo
cl

as
t; 

PA
P, 

pr
os

ta
tic

 a
ci

d 
ph

os
ph

at
as

e;
 P

A
R

P, 
Po

ly
 A

D
P 

ri
bo

se
 p

ol
ym

er
as

e;
 P

D
-L

1,
 p

ro
gr

am
m

ed
 d

ea
th

-li
ga

nd
 1

; P
SA

, 
pr

os
ta

te
-s

pe
ci

fic
 a

nt
ig

en
; R

TK
, r

ec
ep

to
r 

ty
ro

si
ne

 k
in

as
e;

 T
K

I, 
ty

ro
si

ne
-k

in
as

e 
in

hi
bi

to
r;

 a
nd

 V
EG

FR
2,

 v
as

cu
la

r 
en

do
th

el
ia

l g
ro

w
th

 fa
ct

or
 

re
ce

pt
or

 2
.

D
ru

g
C

la
ss

/T
yp

e
Ta

rg
et

Tr
ia

l (
Ph

as
e,

 C
om

bi
na

ti
on

 D
ru

g)

Ab
ira

te
ro

ne
 

ac
et

at
e

H
or

m
on

e 
th

er
ap

y
CY

P1
7A

1
N

CT
02

03
60

60
 (P

ha
se

 2
, +

/-
D

oc
et

ax
el

); 
N

CT
01

94
93

37
 (P

ha
se

 3
, +

/-
En

za
lu

ta
m

id
e)

; 
N

CT
01

97
22

17
 (P

ha
se

 2
, +

/-
 O

la
pa

rib
); 

N
CT

01
48

78
63

 (P
ha

se
 2

, +
/-

 S
ip

ul
eu

ce
l-T

); 
N

CT
02

41
56

21
 (P

ilo
t-

Ad
ap

tiv
e 

Th
er

ap
y)

En
za

lu
ta

m
id

e 
(M

DV
31

00
)

H
or

m
on

e 
th

er
ap

y
AR

 
N

CT
02

11
65

82
 (P

ha
se

 4
, p

os
t-a

bi
ra

te
ro

ne
)

G
al

et
er

on
e

H
or

m
on

e 
th

er
ap

y
CY

P1
7A

1 
an

d 
AR

N
CT

01
70

97
34

 (P
ha

se
 2

)

EP
I-5

06
H

or
m

on
e 

th
er

ap
y

N
-te

rm
in

us
 o

f A
R

N
CT

02
60

61
23

 (P
ha

se
 1

/2
)

Se
vi

te
ro

ne
l  

(V
T-

46
4)

H
or

m
on

e 
th

er
ap

y
CY

P1
7A

1 
an

d 
AR

N
CT

02
44

59
76

 (P
ha

se
 2

); 
N

CT
02

13
07

00
 (P

ha
se

 2
); 

N
CT

02
01

29
20

 (P
ha

se
 1

/2
)

Ap
al

ut
am

id
e 

(A
RN

-5
09

)
H

or
m

on
e 

th
er

ap
y

AR
N

CT
02

12
37

58
 (P

ha
se

 1
, +

Ab
ira

te
ro

ne
 o

r 
+P

re
dn

is
on

e)
; N

CT
02

10
65

07
 (P

ha
se

 1
, 

+E
ve

ro
lim

us
); 

N
CT

01
17

18
98

 (P
ha

se
 1

/2
); 

N
CT

01
79

26
87

 (P
ha

se
 1

)

D
ov

iti
ni

b
TK

I
FG

FR
3

N
CT

01
99

45
90

 (P
ha

se
 2

, +
Ab

ira
te

ro
ne

/P
re

dn
is

on
e)

D
as

at
in

ib
TK

I
Bc

r-
Ab

l a
nd

 S
RC

N
CT

01
68

51
25

 (P
ha

se
 2

, +
/-

 A
bi

ra
te

ro
ne

/
Pr

ed
ni

so
ne

)

Ca
bo

za
nt

in
ib

TK
I

VE
G

FR
2;

 c
M

ET
N

CT
01

63
05

90
 (P

ha
se

 2
, +

An
dr

og
en

 a
bl

at
io

n)
; 

N
CT

01
68

39
94

 (P
ha

se
 1

/2
, +

/-
 D

oc
et

ax
el

/
Pr

ed
ni

so
ne

)

Te
m

si
ro

lim
us

RT
K 

eff
ec

to
rs

m
TO

R
N

CT
01

17
41

99
 (P

ha
se

 1
, +

Vo
rin

os
ta

t)

Ci
xu

tu
m

um
ab

RT
K 

eff
ec

to
rs

IG
F1

R
N

CT
01

02
66

23
 (P

ha
se

 1
/2

, +
/-

Te
m

si
ro

lim
us

)

O
la

pa
rib

PA
RP

 in
hi

bi
to

r
PA

RP
N

CT
01

97
22

17
 

D
en

os
um

ab
Bo

ne
-ta

rg
et

ed
O

CL
 in

hi
bi

to
r

N
CT

02
75

81
32

 (C
or

re
la

tiv
e,

 +
En

za
lu

ta
m

id
e,

 
+/

-A
bi

ra
te

ro
ne

/P
re

dn
is

on
e)

O
st

eo
de

x
Ch

em
ot

he
ra

py
/

Bi
sp

ho
sp

ho
na

te
Tu

m
or

 a
nd

 O
CL

N
CT

02
82

56
28

 (P
ha

se
 2

)

Ra
di

um
-2

23
 

ch
lo

rid
e

Ra
di

op
ha

rm
ac

eu
tic

al
N

CT
02

04
36

78
 (P

ha
se

 3
, +

/-
 A

bi
ra

te
ro

ne
); 

N
CT

01
10

63
52

 (P
ha

se
 1

/2
, +

/-
D

oc
et

ax
el

)

Si
pu

le
uc

el
-T

Im
m

un
ot

he
ra

py
PA

P
N

CT
01

80
70

65
 (P

ha
se

 2
, +

/-
 e

xt
er

na
l b

ea
m

 
ra

di
at

io
n 

th
er

ap
y)

; N
CT

01
98

11
22

 (P
ha

se
 2

 
+E

nz
al

ut
am

id
e)

PR
O

ST
VA

C
Im

m
un

ot
he

ra
py

PS
A

N
CT

01
32

24
90

 (P
ha

se
 3

; +
/-

G
M

-C
SF

)

N
iv

ol
um

ab
Im

m
un

ot
he

ra
py

PD
-L

1
N

CT
02

60
10

14
 (P

ha
se

 2
; +

Ip
ili

m
um

ab
 in

 A
R-

V7
 

ex
pr

es
si

ng
 p

at
ie

nt
s)

Ip
ili

m
um

ab
Im

m
un

ot
he

ra
py

CT
LA

-4
N

CT
02

60
10

14
; N

CT
01

49
89

78
 (P

ha
se

 2
, +

An
dr

og
en

 
su

pp
re

ss
io

n 
th

er
ap

y)
; N

CT
00

06
41

29
 (P

ha
se

 1
, 

+G
M

-C
SF

)



· METASTATIC PROSTATE CANCER ·

19 www.ajho.com  AUGUST 2016

focus of phase I and II clinical trials (Table 1).  
While results for these inhibitors have been encouraging, a ca-

veat has been the emergence of AR variants (AR-V) that, in some 
instances, lack ligand-binding domains but still drive the expression 
of AR-related genes. Recently, AR-V7 has been linked to acquired re-
sistance to enzalutamide and abiraterone.15 EPI-506 is a novel small 
molecule inhibitor that binds to the N-terminal domain of AR and 
therefore could be an effective treatment for mCRPC patients who 
have developed resistance to enzalutamide.16 The long-term safety of 
EPI-506 is currently being studied (NCT02606123). 

Targeting Bone mCRPC From the Outside In 
Although the emphasis has remained on ADT, understanding li-
gands, receptors, and signaling pathways that control CRPC has re-
vealed critical circuits controlling cancer well in survival and growth. 
The mutation/amplification/upregulation of several receptor ty-
rosine kinases (RTKs) have been implicated in the development, 
growth, and progression of prostate cancer and are the focus of clin-
ical trials.17 For example, dovitinib, a tyrosine kinase inhibitor (TKI) 
that binds fibroblast growth factor receptor 3 (FGFR3), is currently 
under investigation for efficacy in combination with abiraterone 
(NCT01994590), after being previously shown to improve bone 
scans and reduce SREs in 6 of 23 patients in a proof-of-principle 
study.18 FGF signaling in bone stromal cells is an important regulator 
of bone formation, and it is possible dovitinib can impact prostate 
cancer cell growth and osteoblast behavior.19 
   Overall, TKI trial results for the treatment of mCRPC have been 
varied. Dasatinib, an inhibitor of multiple TKIs including SRC fam-
ily kinases, reduced disease progression in 57% and bone lesions in 
30% of mCRPC patients in a phase I trial.20 However, in a recent 
phase 3 trial, the combination of dasatinib and docetaxel failed to 
provide a survival advantage compared with docetaxel and placebo.21 
Interestingly, dasatinib has been shown to induce differentiation of 
mesenchymal stromal cells in bone-forming osteoblasts, which may 
exacerbate prostate tumor-induced osteogenesis.22 Combination 
therapy with an anti-androgen may circumvent this possibility. To 
that end, a combinational study of dasatinib and abiraterone/pred-
nisone prior to chemotherapy is currently being investigated for im-
pact on PFS as a primary outcome (NCT01685125). 

Constitutive activation of multiple signaling pathways via differ-
ent RTKs can provide a significant survival advantage for tumors; 
thus dual targeting of TKIs may be beneficial for impacting tumor 
growth. Cabozantinib, for example, is a dual TKI of VEGFR2, the 
receptor for angiogenic factor vascular endothelial growth factor 
(VEGF), and c-MET, a receptor for hepatocyte growth factor (HGF). 
In a phase II randomized trial, daily administration of cabozantinib 
improved bone scans in 68% of mCRPC patients (with complete 
resolution in 12%), reduced soft tissue lesions, and improved 
PFS.23,24 However, cabozantinib failed to reach the primary endpoint 
of increasing OS, compared with prednisone alone, in a phase III 
randomized trial of mCRPC patients who had previously received 
docetaxel and abiraterone.25 Trials examining cabozantinib in com-

bination with androgen ablation (NCT01630590) or chemothera-
pies such as docetaxel (NCT01683994) are ongoing and recruiting. 
RTKs mediate their effects via cell signaling circuitry and inhibitors 
of RTK effectors — such as mTOR for example — are also being ex-
plored clinically (NCT01174199 and NCT01026623). 

Under selective pressures induced by therapeutic regimens, 
prostate cancer cells often acquire resistance to programmed cell 
death. For example, upregulation of DNA repair mechanisms is a 
common way for prostate cancer cells to avoid apoptosis induced by 
environmental stress.26,27 Currently, inhibitors of poly ADP ribose 
polymerases (PARPs) that repair DNA “nicks” are being investigated. 
PARP-1 is a nuclear enzyme that detects single- and double-strand 
DNA breaks and initiates repair mechanisms. Further, PARP-1 can 
bind and regulate AR transcriptional function. PARP-1 has also been 
shown to play a critical role in mesenchymal stem cell--driven osteo-
genesis, making it a promising target for treating bone mCRPC.21,28 
Olaparib (Lynparza), a PARP-1 inhibitor, was included in a phase II 
trial of 50 mCRPC patients, 16 of which had mutational defects in 
DNA-repair genes,29 in bone and visceral organ metastasis biopsies 
measured before and after treatment. Olaparib produced a PSA re-
sponse (decline of 50% or more) in 22% of the patients and reduced 
the numbers of circulating tumor cells in 29%. Eighty-eight percent 
of patients with defects in DNA-repair genes (including BRCA1, 
ATM, CHEK2, and HDAC) showed a positive response to olaparib, 
suggesting that mutations in DNA repair genes may serve as a bio-
marker for mCRPC response to PARP inhibition. A current trial 
is examining the efficacy, safety, and tolerance of olaparib given in 
combination with abiraterone and will be compared with placebo 
with abiraterone (NCT01972217). 

Bone Microenvironment Targeted Therapies for mCRPC 
Treatment 
The surrounding bone microenvironment is a key driver of CRPC 
growth, and as such, presents therapeutic opportunities.3 Although 
a hallmark of mCRPC is bone formation, the lesions also contain 
areas of extensive osteolysis and osteoclast activity. The monoclonal 
antibody denosumab binds to the receptor-activator of nuclear factor 
kappa B-ligand (RANKL), a key regulator of osteoclast formation. By 
preventing interaction with its cognate receptor RANK, denosumab 
effectively inhibits osteoclast formation and activation. Denosumab 
has been proven to significantly increase the median time to 1 SRE 
by 18% (20.7 months vs 17.1 months) compared with bisphospho-
nates.30 Despite these results, no impact on OS of the patients was 
noted compared with the control arm. Because denosumab is well 
tolerated, it is currently being explored in combination with other 
therapies such as abiraterone  (NCT02758132). 

Another class of bone-targeted inhibitors commonly used for the 
treatment of mCRPC is bisphosphonates. Bisphosphonates specifi-
cally target normal and pathological bone formation by binding to 
calcium in newly-formed bone, and upon resorption, they are taken 
up by osteoclasts, inducing their apoptosis.31 Compared with place-
bo, bisphosphonates such as zoledronate significantly increased me-
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dian time to a SRE (488 days vs 321 days for placebo treatment) and 
reduced the frequency of SREs (39% vs 49%). Similar to denosum-
ab, zoledronate does not enhance OS of men with mCRPC.32,33 Bis-
phosphonates are also well tolerated in patients and thus provide an 
advantageous strategy for delivering therapies to the bone tissue and, 
specifically, areas undergoing remodeling. Guanidine, for example, 
is a potent chemotherapy but noted side effects make applying the 
treatment to patients difficult.34 Osteodex is a novel therapy that 
grafts guanidine onto a bisphosphonic foundation with the goal of 
specifically targeting bone metastases and avoiding dose-limiting tox-
icities via bone-specific delivery of guanidine. Osteodex is currently 
in phase II trials that are investigating time to SRE (NCT02825628). 

A recent breakthrough has been the FDA approval of radium-223 
dichloride. The radium isotope is similar in nature to calcium and is 
preferentially absorbed by bone tissue where it emits high-energy al-
pha particles, killing cancer cells within a short range (less than 100 
mcm). Radium-223 was found to improve median OS by 3.6 months 
compared with placebo.35 Because of its success, clinical trials are in-
vestigating the efficacy of radium-223 with other therapies such as 
abiraterone (NCT02043678) and docetaxel (NCT01106352).

Significant advances have been made in the past decade 
with the development of immune-targeted therapies aimed 
at activating anti-tumor immunity and inhibiting pro-tumor-
al immunity. The immunostimulant sipuleucel-T and immune 
vaccine, PROSTVAC, activate the immune system against 2 well- 
defined prostate antigens, prostate acid phosphatase (PAP) and 
PSA, respectively. Sipuleucel-T is a personalized treatment involving 
ex vivo culture of patient-derived antigen-presenting cells (APCs) 
with a fusion protein (PA2024) of recombinant PAP and granulo-
cyte-macrophage colony-stimulating factor (GM-CSF), an immune 
stimulating factor. APC-expressing PA2024 cells are then transfused 
back into the patient where they induce immune activation against 
cancer-derived PAP. Compared with placebo, sipuleucel-T proved to 
be most beneficial for mCRPC patients with low disease burden, 
improving median OS by 4 months and 3-year survival, but has not 
been as successful for patients with more advanced disease (>20 de-
tected bone lesions), demonstrating a need for greater understand-
ing of mCRPC immunogenicity in bone.36-38 

PROSTVAC utilizes 2 recombinant poxviruses: vaccinia (PROS-
TVAC-V), which primes the immune system; and fowlpox (PROST-
VAC-F), an immune system booster. Each vector has been transduced 
to express 4 human genes: PSA and 3 costimulatory molecules that 
enhance T-cell activation (leukocyte function-associated antigen-3, 
[LFA3]; intercellular adhesion molecule-1, [ICAM1]; and B7-1).39 In 
a phase II trial, PROSTVAC significantly improved median OS in 
mCRPC patients.40 These findings contributed to the initiation of 
an ongoing phase III trial investigating the impact of PROSTVAC 
alone or in combination with GM-CSF on overall survival in asymp-
tomatic mCRPC patients (NCT01322490). 

A new wave of immunotherapies has arisen in recent years 
that specifically targets checkpoint inhibition, a mechanism of 
tumor immune evasion that prevents cytotoxic T-cell lympho-

cyte (CTL) activation. Although the percentage of T cells in the 
bone marrow is relatively low, CD4+ and CD8+ CTLs have been 
shown to exert anti-tumor effects in bone metastases of other 
cancers, such as breast and melanoma.41-43 Ipilimumab, a mono-
clonal antibody against receptor cytotoxic T-lymphocyte antigen-4 
(CTLA-4), a negative regulator of T-cell activation, inhibits reg-
ulatory T-cell function and activates cytotoxic T-cells. Although  
ipilimumab has been highly successful for the treatment of metastat-
ic melanoma,44,45 it has not proved efficacious for the treatment of 
mCRPC. In a recent phase III trial, ipilimumab failed to improve 
overall survival in comparison to placebo, yet reduced PSA, and im-
proved 3-month progression-free survival.42 

Several studies have demonstrated adverse effects that ended 
initial clinical trials but of note, a single patient had a dramatic re-
sponse with a reduction in the number of bone lesions and disease 
free survival at 6 years.46 Defining markers predictive of patient re-
sponse to checkpoint inhibitors will be critical for their clinical appli-
cation. Nevertheless, clinical trials are investigating the combination 
of ipilimumab with ADT on disease progression (NCT01498978) 
and the safety of using ipilimumab in combination with GM-CSF 
(NCT00064129). Another checkpoint inhibitor drug, nivolumab, 
a monoclonal antibody that targets PD-1/PD-L1, has shown little 
promise, as there has been no clear indication that CRPC tumors 
express PD-L1.47 Targeting T-cell activation through 2 different 
mechanisms, APC-mediated activation and immune checkpoint in-
hibition, such as combinational PROSTVAC with ipilumimab treat-
ment, may enhance drug efficacy over the individual compounds. 
Clinical trials are studying the efficacy of the checkpoint inhibitors 
combined (NCT02601014) or when added to ADT (NCT01498978).

Upcoming Opportunities and Threats for Bone mCRPC Treat-
ment 
Significant progress has been made in the development of therapies 
that target mCRPC growth in the bone microenvironment. Moving 
forward, the upfront application of therapies in combination — such 
as ADT with radium-223 — for example, may prove more effective 
than sequential treatments in extending OS. Molecular profiling of 
individual mCRPC patients and the identification of response pre-
dictors will clearly be beneficial for the smart application of targeted 
therapies, such as TKIs and immune check point inhibitors, in order 
to achieve maximal responses. A major challenge for the medical on-
cologists is mCRPC heterogeneity and the emergence of resistant dis-
ease.48,49 Adaptive therapy aims to prevent the emergence of resistant 
subpopulations by maintaining therapy-sensitive populations.50 The 
application of therapies, as needed, to stabilize disease progression, 
rather than continuously, is currently being explored in the clinic for 
abiraterone in mCRPC (NCT02415621). Further, novel computation-
al modeling approaches to define optimal therapeutic strategies for het-
erogeneous bone metastatic prostate cancer are under investigation.51-53

In conclusion, a greater understanding of the molecular underpin-
nings of bone metastasis has contributed to an expansion of potential 
therapies for mCRPC. Defining the optimal sequence and combina-
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tions needed for these therapies, identifying key characteristics of the 
tumor that could determine which patients would benefit most, and 
controlling tumor evolution in the bone microenvironment will no 
doubt improve the efficacy of current therapies and significantly ex-
tend the OS of men with mCRPC.
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