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Introduction
The discovery of several molecular markers in thyroid cancer 
heralds an exciting new era of precision medicine, allowing for 
refined prognostication and therapeutic strategy. The global inci-
dence of thyroid cancer is rising rapidly, propelled by the increas-
ing incidence of thyroid nodules diagnosed by ultrasonography.1 
Although the mortality rate for thyroid cancer is relatively low, 
persistent and recurrent disease may occur in 20% to 30% of 
patients affected by this disease2; thus, a deeper understanding 
of its molecular pathogenesis is needed. 

Molecular Pathogenesis
Thyroid cancer originates from 2 types of thyroid endocrine 

cells: follicular thyroid cells and parafollicular C cells,3 the for-
mer accounting for >90% of thyroid malignancies and including 
papillary thyroid cancer (PTC), follicular thyroid cancer (FTC), 
poorly differentiated thyroid cancer (PDTC), and anaplastic thy-
roid cancer (ATC). Of note, PTC and FTC are classified as dif-
ferentiated thyroid cancer (DTC). We will focus our discussion 
on the pathobiology of follicular thyroid cell–derived carcinoma 
and related therapeutic targets. 

The progression of thyroid cancer is thought to be the result 
of an accumulation of genetic and epigenetic lesions that lead 
to perturbations in classical signaling pathways involved in cell 
proliferation and survival.4 The discovery of these molecular al-
terations has yielded several disease biomarkers that may con-
tribute to our ability to diagnose and prognosticate. The Cancer 
Genome Atlas project recently studied 496 PTC cases, identify-
ing driver mutations in all but <4% of cases, and finding that 
different molecular alterations lead to different pathologic and 
clinical features.5 In fact, as with many malignancies, classifica-
tion of thyroid cancers by molecular rather than histologic sub-
type may one day be a more informative approach. These genetic 
alterations have also been linked to the loss of radioiodine (RAI) 
avidity in thyroid cancer, and have become the targets of novel 
drug therapy, suggesting that cure rates beyond conventional sur-
gical thyroidectomy and adjuvant RAI ablation may be possible.

At the core of thyroid cancer pathogenesis are 2 classical 
signaling pathways, the MAPK and the PI3K-AKT pathways.6,7 
Both of these pathways are coupled to the receptor tyrosine ki-
nase (RTK) at the cell membrane, which transduces an extra-
cellular growth stimulus that prompts downstream intracellular 
signaling (Figure). The MAPK pathway has a fundamental role 
in the regulation of cell proliferation, differentiation, apoptosis, 
and survival, and has been linked to tumorigenesis when dis-
rupted. Once RTK is activated by an extracellular signal, down-
stream activation of RAS, followed by BRAF, MEK, and then 
ERK, occurs. ERK then enters the nucleus to induce tumor-pro-
moting genes and downregulate tumor suppressor genes and 
thyroid iodide-handling genes. Several oncogenic mechanisms 
have been identified in association with this pathway, including 
aberrant genome-wide hypermethylation and hypomethylation,8 
and upregulation of oncogenic proteins such as chemokines, 
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matrix metalloproteinases, nuclear factor-κB, and vascular endo-
thelial growth factor A, among many others.4 Many of these pro-
teins have been identified as drivers of cancer cell proliferation, 
growth, migration, and viability. In thyroid cancer, common 
activating mutations of the MAPK pathway include BRAF9 and 
RAS10 mutations, RET-PTC rearrangement,11 and in some cases, 
ALK rearrangements.12 

The PI3K-AKT pathway also plays a significant role in spo-
radic thyroid tumorigenesis. As with the MAPK pathway, an 
extracellular stimulus activates RTK at the cell membrane, and 
subsequently PI3K, ultimately leading to phosphorylation and 
activation of AKT.13 Activated AKT then enters the nucleus to 
upregulate tumor-promoting genes. Within the cytoplasm, acti-
vated AKT also activates other signaling molecules, including 
the mTOR pathway and phosphorylation of glycogen synthase 
kinase 3β. Common genetic alterations implicated in induction 
of the PI3K-AKT pathway include RAS and PTEN mutation or 
deletion, PI3KCA mutation or amplification, AKT1 mutation, 
and amplifications of the RTK genes.14

BRAF Inhibitors
BRAF mutations are the most common genetic alteration found 
in thyroid cancer and are detected in 50% of patients with PTC 
and 25% of PTC-derived ATC.15 The BRAFV600E mutation carries 
prognostic implication and has been correlated with poor clin-
icopathological outcomes, including increased tumor invasion, 
metastasis, recurrence of PTC, and mortality.16-18 A retrospective 
trial evaluated 2099 patients with PTC and found that recur-
rence occurred in 20.9% of patients with BRAFV600E mutations 

versus 11.6% of wild-type mutations.19 The BRAFV600E mu-
tation is also associated with loss of expression of thyroid 
iodide-metabolizing genes, elucidating a mechanism for how 
patients with thyroid cancer lose RAI avidity, resulting in 
recurrence of their thyroid cancer.20 

In the metastatic setting, BRAF inhibitors are part of 
the armamentarium of novel targeted treatments of DTC. 
Vemurafenib, a selective BRAFV600E inhibitor approved in 
BRAF-mutated melanoma, is currently being tested in the 
phase II setting for thyroid cancer. A study of 3 patients with 
metastatic PTC treated with vemurafenib found that time 
to progression (TTP) ranged from 11.4 to 13.2 months.21 
These results prompted a larger phase II study that evalu-
ated survival outcomes associated with vemurafenib in 51 
patients with progressive BRAFV600E-mutated PTC refractory 
to RAI therapy.22 After 6 months, the best overall response 
rate (ORR) was 35% in patients naïve to tyrosine kinase 
inhibitor (TKI) treatment, and 26% in patients previous-
ly treated with TKI therapy. While larger cohorts need to 
be studied, these results are promising in comparison with 
outcomes achieved with systemic chemotherapy, where du-
ration of response is typically <6 months. Additionally, the 
usage of trametinib, a MEK inhibitor, in conjunction with 

dabrafenib—an approach that demonstrated increased survival 
benefit in patients with BRAF-mutant metastatic melanoma23—is 
currently under investigation in an ongoing, randomized, phase 
II trial in patients with recurrent PTC.24

VEGF Receptor Inhibitors
High levels of vascular endothelial growth factor (VEGF 1,2,3), 
the dominant growth factor in angiogenesis, have been found 
in DTC and MTC. In experimental models, interference with 
VEGF blocked the proliferation of DTC cells.25 VEGFR-2 is of-
ten overexpressed in both MTC cells and supporting vasculature. 
It is thought that simultaneous targeting of both MET and VEG-
FR-2 provides an antitumor effect.

Several TKIs that target VEGF receptors have been studied 
in metastatic RAI-resistant DTC, but only 1 has received FDA 
approval. Sorafenib, a multikinase inhibitor of VEGFR-1, -2, and 
-3, RET, BRAF, and platelet-derived growth factor, was approved 
by the FDA in 2013 based on data from the DECISION trial, 
a phase III placebo-controlled trial with 417 patients.26 Patients 
treated with sorafenib showed a significant improvement in me-
dian progression free survival (PFS) compared with placebo (10.8 
months vs 5.8 months; P <.0001). Overall survival (OS) did not 
differ significantly between the groups; however, crossover was 
allowed in this trial. A total of 11 patients discontinued therapy, 
most commonly due to hand-foot skin reactions. 

Lenvatinib, an inhibitor of VEGFR1-3, FGFR1-4, PDGFR-β, 
RET, and KIT signaling networks, was studied in the random-
ized, double-blind, phase III SELECT trial, which evaluated 
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392 patients with progressive, RAI-refractory thyroid cancer.27 
Patients treated with lenvatinib demonstrated a 64.8% response 
rate. Additionally, median PFS was 18.3 months in the lenvati-
nib group versus 3.6 months in the placebo group (P <.0001). 
OS was not reached in either group; however, crossover was also 
allowed in this trial due to significant response rates.

Several TKIs have been studied in phase II trials. In a study of 
145 patients with RAI-resistant metastatic DTC, vandetanib, an 
inhibitor of RET, VEGFR-2, VEGFR-3, and epidermal growth 
factor receptors, improved PFS compared with placebo (11.1 
months vs 5.9 months; P = .0007).28 A total of 24 patients (33%) 
discontinued treatment due to toxicity, QTc prolongation, and 
diarrhea. A phase III study is currently under way. Axitinib, a 
selective inhibitor of VEGFR, was studied in 60 patients with 
advanced thyroid cancer of any histology. The ORR was 38%.29 
Another study of 52 patients with advanced MTC or RAI-resis-
tant DTC demonstrated an ORR of 35% and median PFS of 16 
months.30 Motesanib, an inhibitor of VEGFR-1, -2, -3, PDGF, 
and KIT, was studied in 93 patients, and resulted in 49% of 
patients with either confirmed partial response (PR) or durable 
stable disease (SD) and an estimated PFS of 40 weeks.31 Five pa-
tients developed cholecystitis, which has not been reported with 
other angiogenesis inhibitors. Pazopanib, an inhibitor of c-KIT, 
FGFR, PDGFR, and VEGFR, was studied in a single-arm study 
of 39 patients.32 Treatment led to PR in 49% and a median PFS 
of 11.7 months. 

Sunitinib, which inhibits VEGFR, PDGF, and RET, was test-
ed in 29 patients with positron emission tomography (PET)-pos-
itive, RAI-refractory DTC,33 and at 6 months, 28% of patients 
showed a response and 77% had SD. New preliminary data show 
potential for use of sunitinib as second-line therapy in patients 
who have failed treatment with sorafenib. In 3 patients with met-
astatic RAI-refractory DTC who received sequential treatment of 
sorafenib followed by sunitinib, there was restoration of antineo-
plastic activity as confirmed by biochemical PR and detection of 
tumor necrosis.34 Cabozantinib, an inhibitor of VEGFR-2, MET, 
and RET, was recently investigated in a small phase I study of 15 
patients with advanced DTC who progressed on standard RAI 
therapy, finding a similar safety profile to other multitargeted 
VEGFR inhibitors.35 A National Cancer Institute–sponsored 
phase II trial is currently open for accrual to evaluate the use of 
cabozantinib as second-line therapy in patients with refractory 
DTC.36

RAI Re-Sensitizing Agents
A novel area of development is usage of TKIs as RAI re-sensitiz-
ing agents. Survival is significantly lower in patients with non-
RAI avid disease, with a 10-year survival rate of only 10% ver-
sus 60% in patients with iodine-avid disease.37 Animal studies 
found that inhibition of BRAF or MAPK allowed RAI-resistant 
thyroid cancers to regain the ability to take up iodine. A pilot 

study evaluated 20 patients with metastatic, RAI-refractory DTC 
who were treated with selumetinib, a MEK inhibitor.38 Selume-
tinib increased iodine uptake in 12 patients, and 8 were retreated 
with RAI. Of these 8 patients, 5 had confirmed PR and 3 had 
SD, suggesting that MEK inhibition therapy can lead to RAI 
re-sensitization. This study has led to the development of the 
randomized, double-blind, placebo-controlled, phase III ASTRA 
trial to compare complete response (CR) rates obtained with ad-
juvant selumetinib in addition to adjuvant RAI, versus placebo 
plus RAI in patients with newly diagnosed DTC at high risk for 
primary treatment failure.39

The use of dabrafenib, a selective BRAF inhibitor, was also 
evaluated in 10 patients with BRAFV600E mutations.40 Six patients 
demonstrated new RAI uptake following treatment. These pa-
tients were then treated with RAI, and 2 patients experienced 
PR and 4 patients demonstrated SD at 3 months; additionally, 
thyroglobulin decreased in 4 of these 6 patients. 

Summary
Uncovering the molecular pathobiology of thyroid cancer has 
driven the development of targeted drug therapies that have rev-
olutionized the way we approach thyroid cancer—a theme that 
pervades modern medical oncology in the era of major genomic 
breakthroughs.41 Additionally, these molecular targets may also 
serve as practical biomarkers that may be utilized to predict a 
patient’s risk for developing thyroid cancer, such as in the pre-
operative setting, or risk of cancer recurrence. Our understand-
ing of the genetic and epigenetic alterations involved in thyroid 
carcinogenesis undoubtedly provides opportunity to treat each 
patient more precisely, and in the metastatic setting, identifies 
targeted therapies that may offer significant survival benefit that 
rivals our dismal experience with traditional cytotoxic chemo-
therapy.  
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