Olutasidenib Alone or in Combination with Azacitidine Induces Durable Complete Remissions in Patients with mIDH1 Myelodysplastic Syndromes/Neoplasms (MDS)

Amber Thomassen¹, Jorge Cortes², Jay Yang³, Shira Dinner⁴, Eunice Wang⁵, Maria R. Baer⁶, William Donnellan⁷, Justin Watts⁸

¹Dept of Medical Affairs, Rigel Pharmaceuticals, Inc., South San Francisco, CA; ²Georgia Cancer Center, Augusta, GA; ³Department of Oncology, Karmonos Cancer Institute/Wayne State University, Detroit, MI; ⁴Robert H. Lurie Comprehensive Cancer Center, Northwestern Hospital, Chicago, IL; ⁵Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY; ⁶Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; ⁷Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN; ⁸Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL

INTRODUCTION

- Olutasidenib is a potent, selective, oral, small-molecule inhibitor of mutant isocitrate dehydrogenase 1 (mIDH1)
- Olutasidenib is approved in the US for the treatment of adults with relapsed/refractory (R/R) acute myeloid leukemia (AML) based on the pivotal cohort of a registrational Phase 1/2 trial (NCT02719574)¹⁻³
- The phase 1/2 study included adult patients with AML as well as myelodysplastic syndrome/neoplasms (MDS). We conducted these analyses to better understand the response to olutasidenib in patients with MDS from the Phase 1/2 trial

METHODS

- This Phase 1/2, open-label, multi-center study enrolled 22 patients who were R/R or treatment-naïve (when standard therapy was contraindicated)
- Patients with MDS were intermediate-, high- or very high-risk with *IDH1*^{Arg132X} mutation
- Adequate cardiac, renal, hepatic function, plus ECOG performance status 0-2 were required
- Primary endpoints included response by modified International Working Group (IWG) criteria 2003 and CR + CRh rate

Figure 2. Phase 1/2 Study Design

^aOlutasidenib 100 mg QD was received by a subgroup of patients (n=3).

Olutasidenib was administered orally over continuous 28-day cycles. Azacitidine was IV or SC on days 1-7 of each 28-day cycle.

AZA, azacitidine; BID, twice daily; IDH1, isocitrate dehydrogenase 1; IV, intravenous; RP2D, recommended phase 2 dose; QD, once daily; R/R, relapsed/refractory; SC, subcutaneous; TN, treatment-naive.

RESULTS

Patients

• Twenty-two patients with MDS were enrolled, including 6 who received monotherapy (4 R/R and 2 treatment naive [TN]) and 16 on combination therapy (11 R/R and 5 TN)

Table 1. Demographics and Disease Characteristics

U				
Parameter	Monotherapy (n=6)	Combination Therapy (n=16)	Pooled (N=22)	
dian age, years nge)	77 (66, 87)	72 (59, 82)	74 (59, 87)	
x, n (%)				
ale	4 (67)	9 (56)	13 (59)	
male	2 (33)	7 (44)	9 (41)	
sease state				
l, n (%)	2 (33)	5 (31)	7 (32)	
R, n (%)	4 (67)	11 (69)	15 (68)	
or number of gimens, median ange)	1 (1, 4)	2 (1,4)	1 (1, 4)	
utasidenib treatme	nt received, n (%)			
onotherapy, 0-150 QD	3 (50)	0	3 (14)	
onotherapy, 150 D	3 (50)	0	3 (14)	
mbination	0	16 (100)	16 (73)	
OS risk type, n (%)				
termediate	0	3 (19)	3 (14)	
gh	4 (67)	10 (63)	14 (64)	
ery High	2 (33)	3 (19)	5 (23)	
S cytogenetic risk classification, n (%)				
ood	1 (17)	9 (56)	10 (45)	
termediate	1 (17)	3 (19)	4 (18)	
or	0	2 (13)	2 (9)	
ery poor	2 (33)	0	2 (9)	
nknown	2 (33)	2 (13)	4 (18)	
S <i>IDH1</i> mutation type, n (%)				
.32C	3 (50)	4 (25)	7 (32)	
.32H	2 (33)	10 (63)	12 (55)	
.32G	1 (17)	1 (6)	2 (9)	

IDH1, isocitrate dehydrogenase 1

Response Rates

- months

Parame Best response ORR CR Marrow C PR SD CB PD Not Evaluated **Overall Respor** Time to first response in months, med (range) Duration of response in months, medi (range)

- The overall response rate was 2/6 (33%) for monotherapy and 11/16 (69%) for combination therapy
- Three of 6 patients received monotherapy at a lower dose (100-150 QD) than the approved dose level, and none responded
- Of the 3 patients who received monotherapy at the approved dose level (150mg BID), 2 (66%) responded
- In the 7 TN patients, the overall response rate was 86%. In the 15 R/R patients, the overall response rate was 47%

Transfusion Independence

- Of 22 patients, 13 were dependent on RBC at baseline, and 8 (62%) achieved 56-day transfusion independence (TI). • 8 patients were platelet dependent at baseline, and 5 (63%) achieved
- 56-day TI.

• For the pooled Phase 1 and 2 data (n=22), 6 (27%) patients achieved CR and 7 (32%) patients achieved marrow CR with no PRs, generating a 59% overall response rate

• The median time to response was 2.0 months

• The median duration of response was not reached (NR) at 30.1+

Table 2. Response Rates, Duration of Response, and Disposition

er	Monotherapy ^a (n=6)	Combination Therapy (n=16)	Pooled (N=22)	
, n (%)				
	2 (33)	11 (69)	13 (59)	
	1 (17)	5 (31)	6 (27)	
	1 (17)	6 (38)	7 (32)	
	0	0	0	
	1 (17)	3 (19)	4 (18)	
	1 (17)	0	1 (5)	
	1 (17)	0	1 (5)	
þ	1 (17)	2 (13)	3 (14)	
nse (CR, marrow CR)				
an	4.7 (1.0, 8.3)	2.0 (1.0, 13.0)	2.0 (1.0, 13.0)	

ian	NR (6.7, NR at 29.7+)	NR (0, NR at 30.1+)	NR (0, NR at 30.1+)

^a3 patients received monotherapy at full dose; 1 had a CR, 1 had a marrow CR, and 1 was not evaluated. The other 3 patients received a lower than approved dose; 1 had SD, 1 had CB, and 1 had PD. b3 patients were not evaluated due to short duration of treatment (1-2.5 months). CB, clinical benefit; CR, complete remission; ORR, overall response; NR, not reached; PD, disease progression; PR, partial response; SD, stable disease.

Safety

with AML in this study^{2,3}

Table 3. Treatment-Emergent Adverse Events

TEAE	All Grades (n=22) n (%)	Grade 3 or 4 (n=22) n (%)		
Any TEAE	22 (100)	21 (95)		
Fatigue	14 (64)	3 (14)		
Nausea	13 (59)	1 (5)		
Constipation	10 (45)	0		
Thrombocytopenia	9 (41)	6 (27)		
Vomiting	8 (36)	0		
Febrile neutropenia	6 (27)	6 (27)		
Diarrhea	6 (27)	1 (5)		
Differentiation Syndrome	3 (14)	1 (5)		
ALT increased	3 (14)	3 (14)		
QT prolongation	1 (5)	1 (5)		

TEAE, Treatment-emergent adverse event. ALT, alanine aminotransferase increased

CONCLUSIONS

- mIDH1
- prior regimens
- patients with m*IDH1* MDS

REFERENCES

- Pharmaceuticals, Inc.; December 2022.
- 2. de Botton S, et al. *Blood Adv.* 2023; 7(13):3117-27.
- 3. Watts, et al. *Lancet Hematol*. 2023; 10(1):346-e58.
- 4. Cortes J, et al. *Blood* 2019; 134(supplement 1):674.

Disclosures for Dr. Cortes: Research funding from AbbVie, BMS, Novartis, Pfizer, Takeda, Daiichi, Jazz, Merus, Forma, Astellas, and Amphivena; Consultant to AbbVie, BMS, Novartis, Pfizer, Takeda, Daiichi, Jazz, Merus, Forma, Gilead, BioLineRx, and BioPath.

For more information, please contact: Jorge.cortes@augusta.edu

• The overall safety profile in patients with MDS was consistent with what has been reported in patients

- The most frequent TEAEs in the study were fatigue, nausea, constipation, thrombocytopenia, vomiting, neutropenia, and diarrhea
- Grade \geq 3 TEAEs occurred in 21/22 (95%) patients, and Grade \geq 4 TEAEs in 12/22 (55%)
- The most frequent Grade 3/4 TEAEs reported were cytopenias.
- Grade 3 transaminitis occurred in 1 patient
- Grade 3 differentiation syndrome was reported in 1 patient, who discontinued treatment after 23 days due to pneumonia, which led to respiratory failure and death
- TEAEs resulting in death occurred in 5 patients and included disease progression (3), pneumonia (1, mentioned above) and chest fungal infection (1). These were deemed not related to study treatment

• Olutasidenib, both as monotherapy and in combination with azacitidine, induced durable remissions in patients with intermediate-, high-, or very high-risk MDS with

• Patients had varying treatment backgrounds, including treatment-naive and up to four

 Olutasidenib had a tolerable and manageable safety profile • These encouraging results show that olutasidenib has clinically meaningful activity in

. REZLIDHIA[™] (olutasidenib) capsules, for oral use [prescribing information]. South San Francisco, CA: Rigel