OLUTASIDENIB FOR THE TREATMENT OF m*IDH1* ACUTE MYELOID LEUKEMIA IN PATIENTS RELAPSED OR REFRACTORY TO HEMATOPOIETIC STEM CELL TRANSPLANT, PRIOR MIDH1 INHIBITOR, OR VENETOCLAX

Amber Thomassen¹, Jorge Cortes², Joseph G. Jurcic³, Maria R. Baer⁴, William Blum⁵, P. Brent Ferrell⁶, Brian A. Jonas⁷, Alice S. Mims⁸, Shyam A. Patel⁹, Gary J. Schiller¹⁰, Jay Yang¹¹, Justin M. Watts¹²

¹Dept of Medical Affairs, Rigel Pharmaceuticals, Inc., South San Francisco, CA; ²Georgia Cancer Center, Augusta University, Augusta, GA; ³Columbia University Medical Center, New York, NY; ⁴Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; ⁵Winship Cancer Institute of Emory University, Atlanta, GA; ⁶Department of Medicine, Vanderbilt University Medical Center Nashville, TN; ⁷Department of Internal Medicine, Division of Malignant Hematology/Cellular Therapy and Transplantation, University of California Davis School of Medicine, Sacramento, CA; ⁸Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH; ⁹Department of Medical School, Worcester, MA; ¹⁰Hematological Malignancy/Stem Cell Transplant Program, David Geffen School of Medicine, UCLA, Los Angeles, CA; ¹¹Department of Oncology, Karmanos Cancer Institute/ Wayne State University, Detroit, MI; ¹²Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL

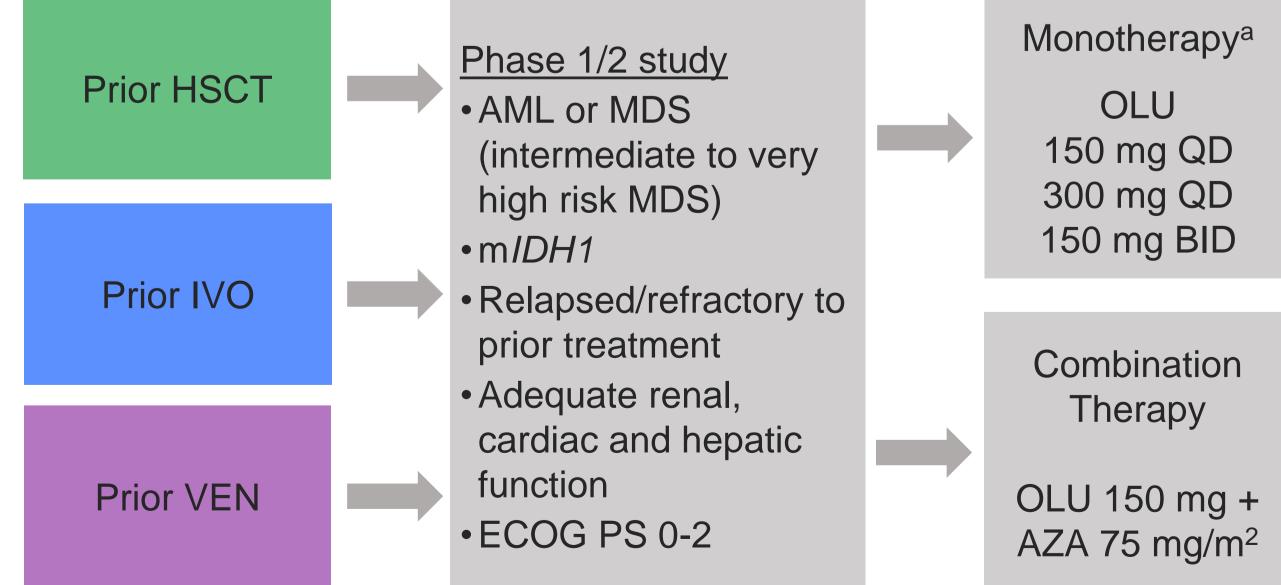
INTRODUCTION

- Olutasidenib is a potent, selective, oral, small-molecule inhibitor of mutant isocitrate dehydrogenase 1 (mIDH1) (**Figure 1**)
- Olutasidenib is approved in the for the treatment of relapsed/refractory (R/R) AML based on the pivotal cohort of a registrational Phase 1/2 trial (NCT02719574)¹⁻⁴
- The trial demonstrated²:
- CR/CRh of 35%
- Duration of response of 25.9 months
- Overall response rate of 48%

Cytoplasm Tumor Cell Citrate -> Isocitrate

expression profiles

Endostatin

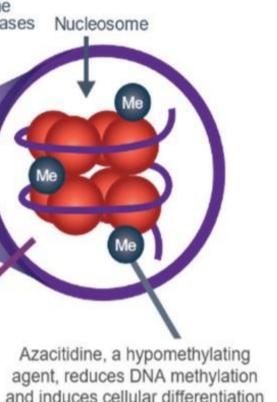

HIF1-a stabilization

Epigenetic changes (e.c hypermethylation) induce mpaired cellular differentiation

METHODS

- The Phase 1/2, open-label, multi-center study enrolled 335 patients with confirmed m*IDH1* AML or intermediate, high-, or very high-risk myelodysplastic syndromes/neoplasms (MDS) who were newly diagnosed, R/R to prior therapy, or in a maintenance therapy cohort
- We conducted subgroup analyses in patients previously treated with hematopoietic stem cell transplant (HSCT), ivosidenib (IVO) or and/or venetoclax (VEN) to better understand the response to olutasidenib in these poor-prognosis subgroups of m*IDH1* AML
- This analysis included patients from the 2 cohorts in phase 1 and 6 of 8 cohorts in phase 2; no newly diagnosed patients were included in this analysis
- Patients received olutasidenib 150mg QD, 300mg QD or 150mg BID monotherapy or the combination of olutasidenib 150mg BID plus azacitidine 75 mg/m² (AZA) (**Figure 2**)
- Endpoints were based on response by modified IWG criteria 2003: Rate of complete remission (CR) plus CR with partial hematologic recovery (CRh)

Figure 2. Source of Patients for Subgroup Analysis



^aOlutasidenib 150 mg QD was received by a subgroup of patients (n=3) in a fed state. Olutasidenib was per os over continuous 28-day cycles. Azacitidine was IV or SC on days 1-7 of each 28-day cycle. AML, acute myeloid leukemia; AZA, azacitidine; BID, twice daily; ECOG PS, Eastern Cooperative Oncology Group Performance Status; HSCT, hematopoietic stem cell transplant; mIDH1, mutated isocitrate dehydrogenase 1; IV, intravenous; IVO, ivosidenib; MDS, myelodysplastic syndrome; OLU, olutasidenib; QD, once daily; SC, subcutaneous; VEN, venetoclax.

Figure 1. mIDH1 Disease Mechanism⁵

RESULTS

• Of 335 patients in the Phase 1/2 olutasidenib study, 31 had prior HSCT, 9 had prior IVO and 20 had prior VEN. Median ages were 60, 72 and 74, respectively (**Table 1**)

Table 1 Demographics and Decaling Characteristics

Table 1. Demographics and Baseline Characteristics					
	Post-HSCT	Post-IVO	Post-VEN		
Ν	31	9	20		
Study Treatment, n Monotherapy Combination therapy	22 9	4 5	16 4		
Median Age, years (range)	60 (40-73)	72 (61-83)	74 (65-83)		
Sex, n Female Male	14 17	4 5	5 15		
AML Type, n Primary Secondary	22 8 (1 MDS)	8 1	10 10		
Duration of AML, months, median (range)	17.3 (0-144)	17.9 (9.1-85.7)	22.1 (1.2-85.7)		
Status ^a , n Refractory Relapsed-Refractory Relapsed ≤12 months Relapsed >12 months CR/CRi	3 1 8 17 2 ^b / 0	1 0 6 2 0	6 0 10 2 0 / 2 ^b		
<i>IDH1</i> Mutation, n R132C R132H R132L/G/S	17 12 2	5 4 0	13 4 3		
Cytogenetic Risk, n Poor Intermediate Favorable Unknown	5 23 1 2	1 7 0 1	6 12 1 1		
Bone Marrow Blasts, % median (range)	58 (1-98)	83 (5-90)	23 (1-95)		
Prior Treatment Regimens, median (range)	4 (2-7)	4 (2-6)	2 (1-6)		

^aRelapsed or refractory (or CR/CRi) status following the last treatment prior to receiving olutasidenib. ^oMaintenance cohort

AML, acute myeloid leukemia; CR, complete remission; CRi, CR with incomplete recovery; HSCT, hematopoietic stem cell transplant; IDH, isocitrate dehydrogenase; IVO, ivosidenib; VEN, venetoclax.

Post-HSCT Olutasidenib

- Six (19%) of the 31 patients in the post-HSCT group had a CR to olutasidenib therapy (including the 1 patient with MDS), and 3 (10%) patients had a CR with incomplete count recovery (CRi) resulting in a 29% composite complete remission (CRc) rate (**Table 2**)
- One patient had a morphologic leukemia-free status, resulting in a 32% overall response rate (ORR). Half the responders received monotherapy, and half received a combination of olutasidenib and azacitidine. Two patients were enrolled in the monotherapy maintenance cohort while in CR to prior HSCT; one of these patients maintained a CR for 13 months before progressing, and the other progressed and discontinued due to a new central nervous system disease (**Table 2**)
- For the 10 patients with overall response, the median duration of response was 7.1 months (range 1-23.4+). At data cutoff, 2 patients were ongoing responders, 3 patients proceeded to a second HSCT, and 3 to donor lymphocyte infusion (DLI) (Table 2)

Table 2. Response, Duration of Response, and Disposition

	Post-HSCT	Post-IVO	Post-
Ν	31	9	20
Status, n (%)			
CR	6 ^{a,b} (19)	2 ^c (22)	6 ^{d,e} (
CRh	0	0	1 (5
CRi	3 (10)	0	2 (1
CRc, n (%)	9 (29)	2 (22)	9 (4
MLFS or PR	1 MLFS (<1%)	0	0
ORR, n (%)	10 (32)	2 (22)	9 (4
DOR, months,	7.1	5.6	NF
median (range)	(1-23.4+)	(3.1 > HSCT)	(4.8-28
Disposition	2 Ongoing 3 HSCT + 3 DLI 12 Progression 4 AE 4 Death 1 Patient decision 1 Physician decision 1 Other	1 HSCT 4 Progression 1 AE 2 Physician decision 1 Other	5 Ong 6 Progre 5 A 2 Patient o 2 Phys decis

^aOne CR patient with prior HSCT was in a maintenance cohort and entered with a CR to prior HSCT. ^bResponse in post-HSCT patients by regimen: 3 CR, 1 CRi and 1 MLFS were in patients receiving combination therapy; all other responders received monotherapy. ^cBoth CR patients with prior IVO received combination therapy.

^dTwo CR patients with prior VEN were in a maintenance cohort, and both entered with a CRi to prior HSCT. ^eResponse in post-VEN patients by regimen: one CR was in a patient on combination; all other responders received monotherapy.

AE, adverse event; CR, complete remission; CRh, CR with partial hematologic recovery; CRc, composite CR; CRi, CR with incomplete recovery; DLI, donor lymphocyte infusion; DOR, duration of response; HSCT hematopoietic stem cell transplant; IVO, ivosidenib; MLFS, morphologic leukemia-free state; NR, not reached; ORR, overall response rate; PR, partial remission; VEN, venetoclax

Table 3. Grade 3/4 Adverse Events (AE)

	Post-HSCT	Post-IVO	Post-VEN
Ν	31	9	20
No. Patients With Any Grade AE	31	9	20
Grade 3/4 AE, patients, n	28	7	17
Common Grade 3/4 AE, n (%)			
RBC count decreased	7 (25)	0	6 (35)
Febrile neutropenia	8 (29)	5 (71)	5 (29)
Neutrophil count decreased	5 (18)	0	4 (24)
Pneumonia	5 (18)	1 (14)	4 (24)
White blood cell count decreased	7 (25)	1 (14)	3 (18)
Platelet count decreased	7 (25)	2 (29)	3 (18)
Hypokalemia	2 (7)	3 (43)	0

Adverse events were consistent with the prescribing information and those reported in patients undergoing treatment for AML.

Death occurred in 14 patients in the post-HSCT group, due to disease progression in 6 patients, pneumonia in 3 patients, and in one patient each: cerebral hemorrhage, enterococcal sepsis, hemorrhagic stroke, respiratory failure, and septic shock. Death occurred in 4 patients in the post-IVO group, due to disease progression in 3 patients and enterococcal bacteremia in 1. Death occurred in 3 patients in the post-VEN group, due to COVID-19, enterococcal bacteremia, and disease progression. HSCT, hematopoietic stem cell transplant; IVO, ivosidenib; VEN, venetoclax.

- 28.5+)
- joing essior decision

Post-IVO Olutasidenib

- In the post-IVO group (n=9), 2 patients (22%) achieved a CR; both CRc and ORR were 22% (Table 2)
- Both responders had received olutasidenib in combination with azacitidine
- One responder proceeded to HSCT after 3.1 months, and one responded for 5.6 months and then progressed

Post-VEN Olutasidenib

- Response rates in the post-VEN group (n=20) included CR in 6 patients (30%), CRh in 1 (5%), and CRi in 2 (10%) resulting in a CRc of 9 (45%) and an ORR of 45% (Table 2)
- One responder received combination olutasidenib and azacitidine
- Two patients in the monotherapy maintenance cohort were CRi to prior treatment; both improved their response to a CR
- Median duration of response was ongoing at 28.5 months

CONCLUSIONS

- This descriptive analysis suggests that olutasidenib alone or in combination with azacitidine may induce complete remissions in patients with m*IDH1* AML or MDS that is R/R to prior therapy with venetoclax, ivosidenib or HSCT
- Although only a small number of patients receiving maintenance therapy were included in this analysis, the data show that maintenance of a CR and even improvement of response from CRi to CR is possible with olutasidenib
- Olutasidenib offers a valuable treatment option for patients with m*IDH1* AML who are refractory or relapsed to prior therapy where there are limited treatment options and a very poor prognosis

REFERENCES

- 1. Rezlidhia[®] (olutasidenib) tablets, for oral use [prescribing information]. San Francisco, CA: Rigel Pharmaceuticals, Inc.; 2022.
- 2. Watts, et al. Lancet Hematol. 2023;10(1):346-e58.
- 3. de Botton S, et al. *Blood Adv.* 2023;7(13):3117-27.
- 4. de Botton, et al. *Blood*. 2021; 138(supplement 1):2351.
- 5. Cortes J, et al. *Blood*. 2019; 134(supplement 1):674.

For more information, please contact: Jorge.cortes@augusta.edu